The First Published Accounts of the Reis Telephone (October 1861)

In case you didn’t know, Philipp Reis invented an electric telephone in 1861.  The big question has always been, as Silvanus Thompson puts it in an exhaustively researched biography published in 1883, “not whether Reis invented telephone—that is not denied—but whether he invented the Telephone” (p. 36).  The title of Thompson’s book is Philipp Reis: Inventor of the Telephone, so we know pretty well where he stood on the issue.  As I’ve written elsewhere, debates over “who invented the telephone” don’t much interest me personally.  But Reis’s work does—I find it very interesting.  Not because I want to see Alexander Graham Bell dethroned; I like and respect him quite a lot as well (and I really hate the notion that credit for inventions is a zero-sum game).  Rather, I find Reis’s work interesting because it muddies the waters so wonderfully.  In what ways was his telephone a “real” telephone, and in what ways was it not?  My own opinion on this point keeps changing.  I think I understand what it was all about and then boom!—some new realization throws everything into confusion.

In this present blog post, I’d like to examine where it all started: how Reis first introduced his invention to the public, and what the public thought of it.

A list of presentations published in the Jahresbericht des Physikalischen Vereins zu Frankfurt am Main (i.e., the annual report of the Physical Society at Frankfurt am Main) for 1861-62 shows that Reis gave two lectures there about his invention during that period, the first on October 26, 1861, and the second on November 16.

Am 26. October 1861 von Herrn Ph. Reis aus Friedrichsdorf: Ueber Fortpflanzung musikalischer Töne auf beliebige Entfernungen, durch Vermittelung des galvanischen Stromes.

Am 16. November von demselben: Darlegung einer neuen Theorie über die Wahrnehmung der Akkorde und der Klangfarben, als Fortsetzung und Ergänzung des Vortrags über das Telephon.


On October 26, 1861, by Mr. Ph. Reis of Friedrichsdorf: On propagation of musical notes to any desired distances by mediation of the galvanic current.

On November 16, by the same: Exposition of a new theory about the perception of chords and timbres, as continuation and completion of the lecture about the telephone.

Both presentations were part of an established series of lectures held by the society every Saturday night from 7-8 PM.  In the fall of 1861, nearly all of these were given in alternate weeks by Rudolf Christian Böttger on chemistry and Ernst Karl Abbe on physics.  In fact, Reis’s two lectures are the only ones listed as having been given by anyone else that season.  They were never published in their original form and may, as far as we know, have been wholly or partly extemporized.

Instead, our main access to Reis’s ideas during this period has come from an article he submitted to the society’s Jahresbericht or annual report for 1860-61, entitled “Ueber Telephonie durch den galvanischen Strom,” i.e. “On telephony by the galvanic current,” dated “December 1861” at its end and published sometime in 1862.  This has generally been treated in practice as Reis’s inaugural explanation of his invention.  However, it presumably combined material from both of his earlier lectures, the substance of which may or may not have been revised in the meantime as he received feedback, mulled things over, and continued his experiments, quite apart from any editorial changes that would have been needed purely in order to stitch everything together into a single text.  The secondary literature I’ve read about the Reis telephone (mostly in English) mentions only one written account of it that predates the article of December 1861: namely, the article “Reproduction des Schalles durch den galvanischen Strom,” i.e., “Reproduction of sound by the galvanic current,” published in the Frankfurter Konversationsblatt of November 29, 1861 (see here for a reprint without source credit in Signale für die musikalische Welt, No. 51, December 5, 1861, p. 715, and here for a nineteenth-century English translation).  Like Reis’s own article, this piece was published only after Reis had delivered both of his lectures, and over a month after the first of them.

So I was troubled by this month-long gap between the reported date of the first public disclosure of Reis’s invention (October 26, 1861) and the earliest actual documentation anyone seemed to be citing for it (November 29, 1861).

But that gap can be filled.  So, for example, we can find contemporaneous advertisements printed in the Intelligenz-Blatt der freien Stadt Frankfurt for Reis’s first and second lectures, as well as for a follow-up demonstration of the telephone on December 7 (in which it’s hard to imagine Reis not having been involved, although it was listed in the Jahresbericht among presentations by Dr. Böttger, who is also reported to have shown Reis’s telephone in Stettin in 1863 and so was plainly competent to describe and operate it).

Granted, these advertisements don’t add much to our knowledge of Reis and his work and instead mainly confirm details we already knew.  But I was more excited recently to find three articles about the Reis telephone published in the interim between the presentations of October 26 and November 16, in each case apparently composed by an earwitness no more than five days after the former event.  Only one of the three seems to have been referenced even in the German-language secondary literature on Reis (although, to be fair, I may have overlooked something—I haven’t yet got my hands on a copy of Wolfram Weimer’s recently-published Der vergessene Erfinder, for example).  These articles furnish rare evidence of how Reis’s invention was presented and understood right at the moment of its first unveiling, with no contamination from any refinements that might have come in the weeks and months that followed.

And their significance doesn’t end there, since they also contain descriptions of the world’s first-ever public demonstration of what would come to be known as the “reproduction” of sound by electricity.  Let me qualify that, though.  As I’ve argued many times, the word “reproduction” is misleading in this context; the sounds that come out of a telephone receiver aren’t holistic “reproductions” of the sounds that drive a telephone transmitter any more than photographs are holistic “reproductions” of the light patterns that were present when they were made.  Rather, they provide just one perspective on a complex multi-dimensional wave phenomenon, with changes introduced in frequency balance and overall amplitude besides.  According to my theory of eduction, what’s at stake is instead retroduction, akin to playback: a matter of resemblance, however partial, rather than indistinguishability.  I bring this up to forestall any objection that the Reis telephone didn’t “reproduce” sound in the sense that today’s audio technology does.  Absolute “reproduction” is a chimera here, and shortcomings are arguably only a matter of degree.  So when Reis’s audience of October 26, 1861, heard recognizable sung melodies coming out of a knitting needle mounted over a violin, transmitted from a remote point by electricity, they were experiencing in principle the same thing we experience today when we hear a semblance of a prior sound reconstituted from an electrical signal—or, indeed, from anything else that isn’t itself a sound vibration, such as a phonograph record.  To the best of my knowledge, no feat of this kind had ever been carried out, or even attempted, in public before then.  The articles in question flesh out this groundbreaking event with colorful descriptions and charming anecdotes.

I’ll present each of the three articles below, first in a German-language transcription from the original Fraktur, and then in my own English translation.


“Frankfurter Stadt-Nachrichten,” Die Zeit, Beilage zu Nr. 178, 29 October 1861, page 2160 (see facsimile here).

This was the first of the three articles to be published, just three days after Reis’s first lecture.  It’s also the shortest, with comparatively little detail.  Even so, it contains some striking observations, my favorite being the comparison of the sound of the telephone to the “singing” of a tea urn, which only an earwitness could plausibly have made.  That said, I’m not at all sure just what sound the author had in mind here.  The German text has Theemaschine, i.e. tea-machine, but the verb “sing” has a particularly close association with a type of sound made by a samovar—in Russian, it’s conventional to say “самовар поёт” (“the samovar is singing”)—so maybe something comparable to that was the intended point of reference.

Verflossenen Samstag den 26. October hatten die zahlreich versammelten Mitglieder des Physikalischen Vereins das Vergnügen, Zeugen von den gelungenen Resultaten einer neuen Erfindung zu sein, welche sowohl theoretisch höchst wichtig ist, indem sie unerwartete Aufschlüsse über bisher noch dunkle Gebiete der Physik bieten wird, als auch für practische Anwendung von mannichfacher noch nicht übersehbarer Folge sein kann.  Es handelt sich um nichts Geringeres als um die Fortpflanzung musikalischer Töne, ganzer Melodien, ja Accordenfolgen, und wie zu hoffen steht, selbst gesprochener Worte mittelst des Telegraphendrathes auf beliebige Entfernungen.  Der Erfinder Herr Ph. Reis, Lehrer in Friedrichsdorf, wies zuerst erklärend seinen Apparat, mit dem er sich seit neun Jahren beschäftigt hat, der Versammlung vor.  Zur Aufnahme des Schalles an der einen Station dient ein künstilches Ohr, dessen Trommelfell, je nach der Tonhöhe in schnellere oder langsamere Schwingungen versetzt, einen Platinhammer bewegt und mittelst desselben die entsprechende Zahl von Stromunterbrechungen an der electricschen Leitung bewirkt.  Dadurch wird an der andern Station ein in der Inductionsspirale eingeschlossner Stahldraht zum entsprechend schnellen Schwingen und damit zum Tönen gebracht.  Der Ton, etwa dem Singen einer Theemaschine vergleichbar, war zwar leise aber den näher Stehenden vollkommen vernehmbar, und ließ nicht nur deutlich Tact und Melodie, sondern sogar einigermaßen die Klangfarbe des Gesanges erkennen.  Zunächst kann die Akustik hoffen, einige ihrer schwierigeren in neuerer Zeit viel ventilirten Fragen auf dem Wege dieser Experimente der Lösung näher zu bringen.


Last Saturday, October 26, the numerous assembled members of the Physical Society had the pleasure of witnessing the successful results of a new invention which is extremely important theoretically, in that it will provide unexpected information on hitherto dark areas of physics, and which can also be of practical use with manifold consequences not yet discernible. It is a matter of nothing less than the propagation of musical notes, whole melodies, indeed chord sequences, and—it is to be hoped—even spoken words to any distances desired by means of the telegraph. The inventor, Mr. Ph. Reis, a teacher in Friedrichsdorf, first gave the assembly an explanatory presentation of his apparatus, with which he has occupied himself for nine years.  For picking up the sound at one of the stations, an artificial ear is used whose tympanum, set into faster or slower vibrations depending on the pitch, moves a platinum hammer and by means of it causes the corresponding number of interruptions in the current of the electrical circuit.  As a consequence, at the other station a steel wire enclosed in the induction coil is caused to vibrate at corresponding speed and thereby to make a sound. The sound, somewhat comparable to the singing of a tea urn, was quiet but perfectly audible to those standing closer by and enabled them to recognize not only clearly the rhythm and melody, but also to some extent the timbre of the singing. Above all, acoustics can hope to bring some of its more difficult questions, recently much ventilated, closer to solution by means of these experiments.


“Die Wirksamkeit des elektrischen Stromes, auf Töne ausgedehnt,” Neues Frankfurter Museum, Beiblatt der “Zeit,” Nr. 183, 3 November 1861, pages 1454 to 1457 (see facsimile here or here).

This is the longest of the three articles, bearing the date October 31, 1861, and the signature “l.” (i.e., a lower-case L followed by a period), if I’m reading it correctly.  There might be a key somewhere linking such identifiers to the names of contributors that would definitively unmask the author, and if so, I hope someone will tell me about it.  In the meantime, it’s at least apparent from the content of the article that we’re dealing with somebody qualified to attend meetings of the Physical Society who had also participated privately in some of Reis’s earlier experiments, including trying to identify “reproduced” piano chords.  So who might that have been?

One important piece of evidence is that a couple passages from this article were later repeated verbatim in another one, published in the Zeitschrift des deutsch-österreichischen Telegraphen-Vereins in 1862, under the byline of Wilhelm von Legat, inspector of telegraphs at Kassel: specifically, the parts describing how the human ear transduces sound and which characteristics of speech the telephone could reproduce.  Silvanus Thompson speculates in his biography that von Legat might have known Reis since 1855, when the latter had performed his military service in Kassel, and that “[i]t is possible that he may have been present at Reis’s discourse in the preceding October [i.e., before 1862],” but he notes that none of Reis’s former acquaintances whom he interviewed recognized von Legat’s name except from the article itself, leaving the nature of the association between the two men something of a mystery (p. 78).

So far, there seem to me to be two possibilities here: one, that von Legat was also the author of the earlier article presented below; or two, that he plagiarized from it while writing his own article of 1862.  But I believe one additional detail favors von Legat as the author of both pieces.  The 1861 article states that, at the time of the presentation on October 26, Reis had already succeeded in using an electromagnet-driven tympanic receiver, a “second ear-like apparatus,” in addition to the knitting-needle-and-violin receiver he used in his actual demonstration.  Silvanus Thompson lists an “electro-magnet receiver” as Reis’s third experimental model of receiver but observes that he was unsure where in the chronology to put it, and that von Legat’s 1862 report was the only original source known to him that mentions it (pp. 30-31).  Thus, the two articles share in common not only some verbatim text, but also the rare description of a receiver in which an electromagnet was made to generate sound waves by tugging a separate body back and forth, as opposed to a receiver based on the principle of magnetostriction in which the magnetization and demagnetization itself produces the sound.

In general, the author’s behind-the-scenes access to Reis’s work makes it hard to know which pieces of information were drawn from the public presentation and which were instead based on privileged outside knowledge.  The remarks about Reis’s theory of auditory sensations, in particular, would seem to involve subject matter associated with the second lecture of November 16, which at this point hadn’t yet been given (although the promise of a “more detailed discussion” to come could hint that Reis had at least brought the issue up in passing during the first lecture).  They also complement the points made in Reis’s published article rather than merely duplicating them, helping to clarify how his auditory theory and his strategy for the telephone mutually influenced and reinforced each other.

In the original text, asterisks *) are used for both of the two footnotes, which appear on different pages.  To avoid ambiguity in my transcription, I’ve substituted **) in the second case, following the convention in use at the time.

Die Wirksamkeit des elektrischen Stromes, auf Töne ausgedehnt.

Einen in mehrfacher Beziehung interessanten Vortrag hielt vorletzten Samstag im hiesigen physikalischen Vereine eines der Mitglieder (Herr Philipp Reis, Lehrer zu Friedrichsdorf) über eine vor eingen Wochen von ihm gemachte Erfindung *), welche in den auf Bewältigung von Raum und Zeit gerichteten Bestrebungen des menschlichen Geistes wiederum ein Schrittchen weiter geht, indem sie nämlich die Wirksamkeit des elektrischen Stroms, der bekanntlich unsere Telegraphen in Bewegung setzt und uns durch sichtbare Zeichen (Bewegungen eines Zeigers, Punkte und Striche eines Stiftes &c.) Worte und Gedanken übermittelt, auch auf hörbare Zeichen, auf Töne beliebiger Art auszudehnen versucht.  Jene Luftwellen nämlich, welche in uns die Empfindung des Schalles dadurch wecken, daß sie zunächst das sogenannte Trommelfell in schwingende Bewegung versetzen, werden bekanntlich von da aus durch einen Hebel-Apparat von bewundernswerther Feinheit, die sogenannten Gehörknöckelchen (Hammer, Ambos, Stiegbügel) nach dem inneren Ohr und den daselbst verbreiteten feinsten Fasern der Gehörnerven fortgepflanzt, und es lag nun, wie Herr Reis im kurzem, aber lichtvollem Vortrag erörterte, in der That der Gedanke nahe, eine künstliche Nachahmung jenes Hebelapparates, gleichfalls durch eine schwingende Membran in Bewegung gesetzt, zum Oeffnen und Schließen einer galvanischen Kette zu benützen und damit an einer durch Telegraphendrähte verbundenen, noch so entfernten Station jene Schwingungsbewegungen in gleicher Zahl und Geschwindigkeit wiederholen zu lassen, d. h. den betreffenden Ton (in gleicher Höhe und Dauer) zu reproduciren.  Freilich standen der Ausführen dieses an sich so einfachen Gedankens, der an das Ei des Columbus erinnert, manche gewichtige Bedenken entgegen.  Wie sollte sich z. B. eine Membran ausfinden, beziehungsweise künstlich construiren lassen, welche, gleich der lebenden des menschlichen Ohrs, Schwingungen von jeder beliebigen Geschwindigkeit (Töne von beliebiger Höhe, — innerhalb gewisser Gränzen — ) willig aufzunehmen und fortzupflanzen geeignet wäre?  Und sollte es, diesen Fall auch angenommen, durch den so zu sagen plumpen Mechanismus des Oeffnens und Schließens einer galvanischen Kette möglich sein, Bewegungen von jener unendlichen Feinheit und Raschheit (oft viele Hundert Schwingungen in einer Secunde) mit der nöthigen Präcision am entfernten Orte wieder hervorzurufen?  — Schwierigkeiten, die vielleicht schon manchen Andern, in welchem jener an sich so nahe liegende Gedanke aufgetaucht sein mochte, von dem Versuche seiner Verwirklichung zurückgeschreckt, — welche nun aber Herr Reis in glücklicher Weise und überraschender Einfachheit, obwohl vorerst nur mit verhältnißmäßig rohen Apparaten, bewältigt hat.

Für die Wiedergabe jener raschen Bewegungen an dem entfernten Orte nämlich gab es mehrere Wege.  So z. B. konnte man dort einen zweiten ohrähnlichen Apparat aufstellen, der durch ein dem ersten ähnliches, ganz nach Art unserer Telegraphen mittels eines Elektromagneten in Bewegung gesetztes Hebelwerk die Schläge jenes ersten wiederholte, und auch diese Methode ist Herrn Reis bereits gelungen.  Bei den uns vorgeführten Versuchen aber hat er in sinnreicher Weise eine andere Wirkung des elektrischen Stroms benützt.  Es ist nämlich eine seit lange bekannte Thatsache, daß dieser Strom, einen Eisenstab spiralförmig umkreisend, diesen Letzteren sofort bei seinem Eintreten nicht nur in einen Magneten verwandelt (und bei der Unterbrechung wieder demagnetisirt, — worauf ja eben unsere gewöhnlichen Telegraphen beruhen), sondern daß der Eisenstab zugleich, im Augenblicke dieser Umwandlungen, eine dem Ohr vernehmbare Erschütterung seiner kleinsten Massentheilchen, eine tönende Molecularbewegung erleidet. Durch wiederholte Unterbrechung und Erneuerung des galvanischen Stroms wird man es daher in seiner Gewalt haben, von einer noch so entfernten Station aus diese tönende Erschütterung, diesen schwachen Stoß oder einfachen Schall nach Belieben wiederholt hervorzubringen, ja, bei sehr rascher, regelmäßiger Wiederholung jene nämliche Empfindung in unserm Gehörorgan hervorzurufen, welche jede solche rasche und regelmäßige Erschütterung hervorruft: die Empfindung eines Tons im musikalischen Sinne des Wortes.

Denken wir uns also z. B. an der Station A das erstbeschriebene künstliche Ohr, und an der Station B einen solchen Eisenstab aufgestellt, welcher von der aus A kommenden Stromleitung (einem dünnen Kupferdrahte) umkreist wird, und machen wir die weitere Annahme, es werde in A, in der Nähe des ersteren Apparates, z. B. etwa der Ton c̄, der sich als solcher durch circa 262 Schwingungen in der Secunde charakterisirt, entweder durch die menschliche Stimme, oder ein beliebiges Instrument hervorgebracht, so wird dieser Ton die ausgespannte Membran jenes nachgeahmten Ohrs, jenes künstliche Trommelfell, in Erschütterungen oder Schwingungen versetzten, deren 262 auf die Secunde kommen; es werden sich diese Schwingungen zunächst dem kleinen, an dem Membran befestigten Hebelwerke (Hammer und Amboß, einfach aus dünnem Platindraht gefertigt) mittheilen, d. h. zwischen ihnen eine gleiche Anzahl von Berührungen und Trennungen, — und somit (da von jenen beiden Hebelchen jedes mit einem Drahte der galvanischen Leitung in Verbindung steht) 262 Schließungen und Oeffnungen des elektrischen Stromes in der Secunde bewirken.  Da nun aber eine jede dieser Schließungen an der andern Station B den von der Drahtleitung umkreisten Eisenstab magnetisch macht und dadurch in ihm jene hörbare Erschütterung veranlaßt, so werden auch dort solcher Erschütterungen oder einzelner Stöße je 262 in der Secunde erfolgen, d. h. ein in der Nähe befindliches (wirkliches) Ohr wird auch dort (an der Station B) den nämlichen Ton c̄ vernehmen müssen. **)  In gleicher Weise aber wird sich offenbar auch jeder andere Ton, von größerer oder kleinerer Schwingungsgeschwindigkeit, in dieser seiner ihm eignen bestimmten Tonhöhe wiedergeben lassen, wenigstens innerhalb zweier ziemlich weiter Grenzen, welche durch die Schwingungsfähigkeit der aufnehmenden Membran, d. i. durch Spannung, Elasticität und Dimension derselben gesteckt sein werden.  (Bei den Vorversuchen kamen z. B. von der ganzen Tonreihe eines Klaviers von gewöhnlichem Umfange beinahe 3 Octaven vollkommen deutlich wieder: die tieferen Töne dagegen wurden kaum, die höheren nur dem Rhythmus, nicht der Tonhöhe nach erkannt, d. h. erschienen alle von gleicher Höhe.)  Daß der so reproducirte Ton weit schwächer sein werde, als der ursprüngliche, war vorauszusehen, wenn man erwägte, ein wie geringer Theil der erregenden Schallwelle die kleine Membran des künstlichen Ohres trifft und also überhaupt zur Verwendung kommt, und wie leise überdies die (lange Zeit ganz übersehene) Lufterschütterung ist, die ein Eisenstab beim Wechsel seines magnetischen Zustandes hervorbringt.  Dessen ungeachtet gelingt es, wie Herr Reis durch den Versuch gezeigt, jede beliebige Melodie auch für eine größere Versammlung vollkommen deutlich zu reproduciren, und es hatte in der That etwas Magisches, die von dem unscheinbaren, harm- und regungslos daliegenden Stäbchen (einer gewöhnlichen Stricknadel, welcher eine untergelegte Geige als Resonanzboden diente) ausgehenden Töne zu vernehmen, wie sie an der andern, von dem Hörsaale auf Straßenlänge entfernten Station in das dort aufgestellte künstliche Ohr gesungen, oder durch ein Horn, eine Ziehharmonika &c. ihm zugeführt wurden.  Bekanntere Volksweisen wurden von den Answesenden sofort bei den ersten Takten wiedererkannt, und auch der am Schlusse der einen von dem Sänger angebrachte willkürliche Schnörkel blieb nicht aus.  Welche interessanten Spukgeschichten würden sich vor 100 Jahren durch eine solche an der Wand hangende Geige, die, zumal bei stiller Nacht, plötzlich zu singen, oder gar zu sprechen anfängt, haben bewerkstelligen lassen!  Denn auch die gesprochene Rede, z. B. beim Vorlesen aus einem Buche, kommt, wenigstens in Bezug auf Tonfall, der einzelnen Worte wie der Sätze, auf fragende, ausrufende, verwundernde, auffordernde Betonung &c. deutlich zum Vorschein.

Daß dabei keine Täuschung obwalte, also namentlich nicht etwa der ursprüngliche Ton direct gehört werde (was übrigens bei der am Samstag angewendeten größeren Entfernung ohnehin schon nicht mehr denkbar wäre), oder etwa die Leitung des Schalles, die ja allerdings auch durch feste Körper sehr leicht und kräftig vermittelt wird, durch den die beiden Stationen verbindenden dünnen Kupferdraht selbst bewerkstelligt werde, daß überhaupt von keiner „Leitung des Tons durch den galvanischen Strom“, sondern nur von einer Wiedererzeugung durch dessen Vermittelung die Rede sei, ergab unzweifelhaft der gleichfalls angestellte Controlversuch, nach welchem die tönende Stricknadel sofort verstummt, wenn man den elektrischen Strom entweder von der ihn liefernden Batterie aus unterbricht, oder ihn, durch Berührung der zwei Leitungsdrähte unter sich, statt um die Nadel, neben ihr vorbei gehen läßt, so daß er sie nicht mehr magnetisiren kann: es ließ sich auf diese Weise jedes beliebige Stück der vernommenen Melodie ausschalten, jeder einzelne Takt, ja jede beliebige Note nach Willkür in eine gleichlange Pause verwandeln.

Noch merkwürdiger aber bleibt es, daß sich nicht bloß einstimmige Melodien, sondern auch die Harmonie bis zu gewissem Grade, und bei noch weiter vervollkommnetem Apparate vielleicht vollständig wiedergeben läßt.  Schreiber dieser Zeilen hat bei den mit Hrn. R. angestellten Vorversuchen von einer ganzen Reihe auf dem Klavier angeschlagener Akkorde die große Mehrzahl in ihrer Zusammensetzung richtig erkannt, was durch sofortiges Aufschreiben des Gehörten controlirt ward, und es scheint hiermit in der That fast schon der experimentelle Beweis geliefert, daß (nach Hrn. R’s. Theorie der Gehöresempfindungen, deren genauere Auseinandersetzung er sich für eine spätere Mittheilung vorbehalten hat) unser Ohr eigentlich niemals mehrere Töne zugleich (ebenso wenig, wie das Auge an demselben Punkte des Gesichtsfeldes mehrere Farben zugleich), sondern stets nur einen, durch das Zusammenwirken verschiedener Wellen aber möglicher Weise eigenthümlich modificirten Ton wahrnimmt, und durch Erziehung sich die Fähigkeit erwirbt, die zu jener eigenthümlichen Modification erforderlich gewesenen elementären Wellenlängen wieder herauszufinden.  Ja, sogar mit Dem was wir Klangfarbe und Articulation des Tons zu nennen pflegen, und was die gewöhnliche, mechanische Akustik bis jetzt nicht hinlänglich zu erklären gewußt, hat es, nach Hrn. R’s. Dafürhalten, eine ganz ähnliche Bewandtniß, und es steht zu hoffen, daß es ihm, wenn diese Ansichten sich bewähren, bei noch weiterer Verbesserung seiner Verrichtungen gelingen werde, auch jene Eigenthümlichkeiten der Gehörsobjecte zu reproduciren.  Daß dabei die Größe der Entfernungen, wenn diese auch bis jetzt nur unbedeutend gewesen, einen erheblichen Unterschied machen werde, ist nicht anzunehmen, und wenn wir nach Dem allem auch noch nicht sagen wollen (am allerwenigsten der bescheidene Erfinder selber), daß es in nächster Zukunft schon gelingen werde, uns auf dem Telegraphenbüreau, oder (mit Hilfe einer Privatleitung) daheim in unserm Zimmer mit unsern entfernten Verwandten und Freunden mündlich zu unterhalten, oder daß die Concertgesellschaften demnächst auch Haus-Abonnements eröffnen und es dem Einzelnen durch seine Zuleitungsdrähte ermöglichen werden, mit den Seinen dem Concerte beizuwohnen, ohne sich von seinem Sopha oder – aus seinem Bette zu erheben (und dabei überdies jede ihm minder interessante Nummer durch eine kaum sichtbare Bewegung eines Drahtknöpfchens auszuschalten) u. s. w.: so wird sich doch soviel kaum bezweifeln lassen, daß die schöne Entdeckung des Hrn. R. nicht bloß vom höchsten theoretischen Interesse für die Wissenschaft, sondern vielleicht bei weiterer Vervollkommnung auch einer praktischen Verwerthung fähig, und die von ihm in Ansicht gestellte ausführlichere Veröffentlichung seiner Ergebnisse den Physikern in hohem Grade willkommen sein wird.

Frankfurt a. M., am 31. October 1861.

*) S. Nr. 179 der „Zeit“ (Hauptblatt).

**) Keineswegs aber bildet, wie ein Referent in den „Frankfurter Nachrichten“ vom 30. Oct. es aufgefaßt zu haben scheint, der Wagner-Neeff’sche Selbstunterbrecher die weitere Grundlage des beschriebenen Versuchs, mit dem er überhaupt nichts zu schaffen hat.  Vielmehr ist bei diesem (außer dem tönenden Stäbchen selbst) gar kein Elektromagnet vorhanden, und die Unterbrechungen des Stroms werden in keiner Weise (weder unmittelbar, noch mittelbar) durch diesen selber, sondern stets nur durch die schwingende Membran mittelst ihres kleinen Hebelwerkes hervorgebracht.


The agency of the electric current extended to sound.

A lecture interesting in multiple respects was given the Saturday before last in the Physical Society here by one of the members (Mr. Philipp Reis, teacher in Friedrichsdorf) about an invention he made a few weeks ago* which again goes a step further in the efforts of the human spirit to master time and space, namely in that it seeks to extend the agency of the electric current, which, as is well known, sets our telegraph into motion and transmits words and thoughts to us through visible signs (movements of a pointer, dots and dashes of a pen, etc.), to audible signs as well—to sounds of any kind.  Those air waves, to wit, which arouse the sensation of sound in us by first setting the so-called tympanum into vibratory motion are known to be reproduced from thence by a lever apparatus of wonderful delicacy, the so-called auditory bones (hammer, anvil, stirrup), to the inner ear and propagated to the finest fibers of the auditory nerves distributed there; and the thought now suggested itself, as Mr. Reis discussed in his short but enlightening lecture, of using an artificial imitation of this lever apparatus, likewise set into motion by a vibrating membrane, to open and close a galvanic circuit, and thereby to have those oscillatory movements repeated in the same number and speed at a station connected by telegraph wires, however distant, that is, to reproduce the sound in question (with equal pitch and duration).  True, some weighty considerations stood in the way of implementing this thought, so simple in itself, which is reminiscent of Columbus’ egg.  How, for example, should a membrane be found, or caused to be artificially constructed, which, like the living one of the human ear, would be suited readily to picking up and propagating vibrations of any desired speed (sounds of any pitch—within certain limits)?  And, even taking this condition for granted, should it be possible through the so-to-speak clumsy mechanism of opening and closing a galvanic circuit to give rise again to movements of such infinite delicacy and rapidity (often many hundreds of oscillations per second) with the needful precision in the remote place?—Difficulties which have perhaps already frightened away many others in whom this thought, so obvious in itself, might have arisen, from attempting its realization—but which Mr. Reis has now overcome successfully and with surprising simplicity, although at first only with relatively crude devices.

There were of course several ways of reproducing those rapid movements in the remote place.  So, for example, a second ear-like apparatus could have been set up there which—through a lever mechanism similar to the first, set into motion wholly in the manner of our telegraphs by means of an electromagnet—repeated the pulsations of the first; and this method too has already succeeded for Mr. Reis. In the experiments presented to us, however, he cleverly made use of another effect of the electric current.  It is namely a fact long known that this current, circling in a spiral around an iron rod, not only transforms the latter into a magnet as soon as it commences (and demagnetizes it again when interrupted—precisely whereupon our ordinary telegraphs depend), but that the iron rod simultaneously, at the moment of these transformations, undergoes a vibration of its smallest particles that is audible to the ear, a sonorous molecular movement.  By repeatedly interrupting and restoring the galvanic current, one will have it in one’s power repeatedly to bring forth at will from a station however distant this sonorous vibration, this weak shock or simple sound, yea, with very rapid, regular repetition to give rise to that selfsame sensation in our organ of hearing to which every such rapid and regular vibration gives rise: the sensation of a tone in the musical sense of the word.

Let us therefore consider, for example, at station A the artificial ear first described, and such an iron rod set up at station B which is encircled by the electric line (a thin copper wire) coming from A, and let us make the further supposition that at A, close by the first apparatus, there is brought forth perchance the note c̄—which is characterized as such by circa 262 vibrations per second—either by the human voice or any desired instrument, so this note will set the stretched membrane of that imitated ear, that artificial tympanum, into vibrations or oscillations of which 262 come per second; these vibrations will first be communicated to the small lever mechanism attached to the membrane (hammer and anvil, made simply from thin platinum wire), that is, an equal number of contacts and separations between them—and will consequently (since each of these two little levers is connected by a wire to the galvanic line) effect 262 closings and openings of the electric current per second.  But now since at the other station B each of these closings makes the iron rod encircled by the conducting wire magnetic and thereby causes in it that audible vibration, so such vibrations or individual shocks will ensue there at a rate of 262 per second, that is, a (real) ear situated close by will necessarily also hear there (at station B) the selfsame note c̄.**  In the same way, however, every other note with a greater or lesser speed of vibration will manifestly also be reproduced at this its own particular pitch, at least within two fairly wide limits which will be set by the vibratory faculty of the receiving membrane, that is, by the tension, elasticity and dimension of the same.  (In preliminary experiments, for example, there came back from the whole series of notes of a piano of ordinary size almost 3 octaves with perfect clarity: the lower notes, on the other hand, were hardly recognized, and the higher notes only by the rhythm, not the pitch; that is, all appeared to be of the same pitch.)  That the sound reproduced in this way would be far weaker than the original was to be foreseen, if one considered how small a portion of the instigating sound wave strikes the small membrane of the artificial ear and so comes at all to use, and moreover how quiet the aerial vibration (for a long time entirely overlooked) is which an iron rod brings forth when changing its magnetic state.  Regardless of this, it is possible, as Mr. Reis has shown by experiment, to reproduce any desired melody, even for a larger gathering, with perfect clarity; and there was indeed something magical about hearing sounds proceed from that unpretentious little rod (an ordinary knitting needle, which a violin placed underneath served as a sounding-board), lying there harmless and motionless, as they were sung at the other station, a street’s length away from the lecture hall, into the artificial ear set up there, or supplied to it by a horn, an accordion, etc.  Better-known popular airs were recognized by those present immediately in the first measures, and even the capricious flourish applied by the singer to the end of one was not lacking.  What interesting ghost-stories could have been contrived 100 years ago by such a violin hanging on the wall which, especially on a quiet night, suddenly starts to sing, or even to speak!  For even spoken words—when reading aloud from a book, for example—appear clearly, at least with regard to intonation, of the individual words as well as the sentences, upon questioning, exclaiming, wondering, exhorting accentuation, etc.

That no deception exists thereby, and particularly the original note is not perchance heard directly (which besides would no longer be conceivable at the greater distance used on Saturday); or perchance the conduction of sound, which of course is also mediated very easily and strongly through solid bodies, is effected by the thin copper wire itself which connects the two stations; that it is not at all a matter of the “conduction of the sound by the galvanic current,” but only of a regeneration through its mediation, was shown beyond doubt by the control experiment that was also made, in which the sonorous knitting needle immediately becomes silent if the electrical current is either interrupted from the battery supplying it or, by touching the two conducting wires between themselves instead of around the needle, made to pass by next to the latter so that it can no longer magnetize it: in this way any desired piece of the melody being heard can be cut out, any individual measure, yea, any desired note transformed at will into a pause of equal length.

It remains more remarkable still, however, that not only melodies of one part but also harmony can be reproduced to a certain extent and, with an apparatus yet further perfected, perhaps completely.  In preliminary experiments made with Mr. R. of a whole series of chords struck on the piano, the writer of these lines correctly recognized the great majority in their composition, which was controlled by immediately writing down what was heard, and in fact there almost already seems to have been provided experimental proof hereby that (according to Mr. R.’s theory of auditory sensations, a more detailed discussion of which he has reserved for a later communication) our ear actually never perceives several notes at the same time (any more than the eye perceives several colors at the same point in the field of vision), but always perceives only one note, though perhaps peculiarly modified by the interaction of different waves, and through training acquires the ability to discover again the elementary wavelengths that were necessary for that peculiar modification.  Indeed, even with that which we are wont to call the timbre and articulation of a note, and which ordinary, mechanical acoustics has not been able to explain adequately until now, the circumstances of the case are, according to Mr. R’s. opinion, very similar, and it is to be hoped that, if these views prove true, he will succeed in reproducing even those peculiarities of the objects of hearing by yet further improvement of his accomplishments.  It is not to be supposed that the size of the distances, even if this has been insignificant up to now, will make any considerable difference; and if after all this we do not want to say (least of all the humble inventor himself) that in the near future it will surely be possible to converse orally in the telegraph office or (with the aid of a private line) at home in our room with our faraway relatives and friends, or that the concert societies will soon also inaugurate house subscriptions and enable the individual through his supply wires to attend the concert, he and his, without getting up from his sofa or – from his bed (and thereby moreover to cut out any number that is less interesting to him by a barely visible movement of a wire-button), etc.: still this much can hardly be doubted, that Mr. R’s beautiful discovery is not only of the highest theoretical interest for science, but perhaps with further perfection also capable of practical use, and the more detailed publication contemplated by him of his results will be highly welcome to physicists.

Frankfurt am Main, 31 October 1861.

* See No. 179 of the “Zeit” (main sheet)

** But by no means, as a reviewer in the “Frankfurter Nachrichten” of October 30 seems to have understood it, does the Wagner-Neeff automatic circuit-breaker form the further basis for the described experiment, with which it has nothing whatsoever to do.  Rather, there is with this (apart from the sonorous rod itself) no electromagnet at all, and the interruptions of the current are not in any way (either directly or indirectly) produced by the same, but always only by the vibrating membrane by means of its small lever mechanism.


“Zur Tagesgeschichte Frankfurts,” Frankfurter Nachrichten, No. 127, 30 October 1861, page 1012 (see facsimile here):

I first ran across this third piece—which was actually the second of the three to come out—thanks only to the footnote which mentions it in the preceding article.  (The other citation in the preceding article, to the main sheet of Die Zeit number 179, seems to be in error and was probably supposed to point instead to the account of the Reis telephone in the supplement or Beilage to number 178.)  Later, however, while searching to see whether anyone else had referenced it anytime recently, I found it cited in Rolf Bernzen’s Das Telephon von Philipp Reis: Eine Apparategeschichte (1994), page 224, footnote 20, which states further that the same text—with minor differences—had also appeared in Didaskalia (numbers 299 and 300) on October 29, 1861.

What most stands out for me in this final selection (which was also reprinted in Urania and, more or less abridged, in other places too), is its description of the audience’s visceral reaction to hearing the telephone in action.  However, I’m also struck by the skimpy technical explanation of the telephone itself—a reader back in 1861 really wouldn’t have come away with a decent understanding of how it worked—coupled with the reviewer’s impulse to quibble over just which previous discoveries had contributed to its invention.  (Fact-check: as far as I can determine, the discoveries credited here to Senator G. Kessler-Gontard and J. P. Wagner had been announced only in 1840, while those of Charles Grafton Page had been published in 1837, and so do not appear to have involved “much later experiments” as claimed.)

Für die jüngste Versammlung der Mitglieder des „physikalischen Vereins“ war angekündigt: „Vortrag des Vereinsmitgliedes, Herrn Ph. Reis aus Friedrichsdorf: Ueber Fortpflanzung musikalischer Töne auf beliebige Entfernungen durch Vermittlung des galvanischen Stroms.“  Wir bekennen, sagt ein Referent, daß diese Ankündigung uns vermuthen ließ, es müsse hier eine Selbsttäuschung unterlaufen, da der electrische Strom, als solcher, den Ton nicht fortzupflanzen vermag, wie es durch die Schallwellen in der Luft geschieht.  Wir kamen also zu dem Vortrage mit einem für begründet erachteten Vorurtheil.  Allein die Einleitung, von wissenschaftlichem Standpunkte ausgehend, schwächte unser Vorurtheil mehr und mehr ab, und als wir und alle Answesenden im Hörsaale nun im Experiment, die Melodie eines in dem entfernt gelegenen Bürgerhospital gesungenen, bekannten Liedes ganz deutlich vernahmen, da entstand ein allgemeines Erstaunen und die freudigste Ueberraschung, die sich allseitig laut aussprach.  Als Grundlage zu dieser neuen Erfindung benutzt Herr Reis die von Herrn Senator Keßler dahier gemachte Entdeckung, daß im Eisenkern der electromagnetischen Drahtspirale, wenn sie dem electrischen Strome als Leiter dient, im Augenblick der Unterbrechung des Stroms ein Ton entsteht, entsprechend der Stärke desselben.  Diese Entdeckung erweiterte Wagner, indem er nachwies, daß alle elastischen Metalle (folglich Blei und Quecksilber ausgeschlossen) auch dann tönen, wenn sie dem electrischen Strome direct als Leiter dienen und derselbe unterbrochen wird.  Es wurde zu jener Zeit in der Versammlung deutscher Naturforscher und Aerzte in Erlangen Mittheilung hiervon gemacht.  Indessen versichert Herr Reis, diese nicht gekannt zu haben, sondern daß ihm die viel späteren Versuche von Page in Amerika erst bekannt geworden seien.  Eine weitere Grundlage fand Hr. Reis in der von Wagner erfundenen Selbstunterbrechung und Wiederherstellung des electrischen Stromes, welche von dem verstorbenen Herrn Dr. Reeff für einen Apparat zu medicinischen Zwecken in Anwendung kam.  Dieser Apparat wurde seiner Zeit in der Versammlung deutscher Naturforscher und Aerzte in Freiburg im Breisgau vorgezeigt und hat seitdem allerwärts Verbreitung gefunden; außerdem wird von der Selbsttrennung und Schließung der Kette auch in der Telegraphie Gebrauch gemacht.  Da dieselbe mit so großer Schnelligkeit erfolgt, daß aus den Schwingungen ganz hohe Töne entstehen, so leitete diese Schnelligkeit Herrn Reis auf die Idee mittelst des electrischen Strom sein Organ zu construiren zum Uebermitteln des direct gesprochenen Worts in weiteste Entfernungen, und in der That hat er in scharfsinnigster Weise, wie gezeigt, erreicht, Melodien ganz vernehmbar hören zu lassen, und da diese nicht eigentlich fortgepflanzt, sondern rhytmisch wieder erzeugt werden, so so bietet die Entfernung kein größeres Hinderniß, als für die in Ausübung befindliche Telegraphie.  Sollte durch weitere Vervollkommnung es Herrn Reis gelingen, das gesprochene Wort, direct, sicher und präcis, in den electrischen Strom einzuführen und so den jetzigen Telegraphendraht zu einem Sprechorgan zu gestalten, so würde diese Erfindung doch wohl den Gipfel aller Erfindungen unseres erfindungsreichen Jahrhunderts bilden.


For the most recent meeting of the members of the “Physical Society” was announced: “Lecture by society member Mr. Ph. Reis from Friedrichsdorf: On propagation of musical notes to any desired distances by mediation of the galvanic current.”  We confess, says one reviewer, that this announcement led us to suspect that there must be a self-deception here, since the electric current, as such, is not able to propagate sound as happens through sound waves in the air.  We thus came to the lecture with a prejudice deemed to be well founded.  Only the introduction, proceeding from a scientific standpoint, weakened our prejudice more and more; and when we and all those who were in the lecture hall now heard very clearly in the experiment the melody of a well-known song sung in the distant community hospital, there arose a general amazement and the most joyous surprise, which was expressed aloud on all sides.  As the basis for this new invention, Mr. Reis uses the discovery made here by Senator Kessler that in the iron core of the electromagnetic coil, if it serves as a conductor for the electrical current, a sound is produced at the moment the current is interrupted, according to the strength of the same.  Wagner extended this discovery by showing that all elastic metals (lead and mercury consequently excluded) also make a sound if they serve directly as conductors of the electric current and the same is interrupted.  At that time there was an announcement made of this at the Congress of German Naturalists and Physicians in Erlangen.  Meanwhile, Mr. Reis assures us that he did not know this, but that he only became aware of Page’s much later experiments in America.  A further basis was found by Mr. Reis in the automatic interruption and restoration of electrical current invented by Wagner, which was used by the late Dr. Reeff for an apparatus for medical purposes.  This apparatus was shown at the Congress of German Naturalists and Physicians in Freiburg im Breisgau and has since then found diffusion everywhere; besides, the automatic severing and closing of the circuit is also used in telegraphy.  Since the same takes place with such great rapidity that very high notes arise from the vibrations, this rapidity led Mr. Reis to the idea of constructing his organ for transmitting the directly-spoken word by means of the electric current to the greatest distances; and in fact he has succeeded in a most astute manner, as has been shown, in making melodies quite audible; and since these are not actually propagated, but rhythmically reproduced, distance presents no greater obstacle than for the telegraphy which exists in practice.  Should Mr. Reis succeed through further improvement in introducing the spoken word directly, surely, and precisely into the electrical current and so transforming the present telegraph wire into an organ of speech, this invention would surely constitute the apex of all the inventions of our inventive century.


Postscript.  A few other first-hand accounts exist of the demonstration on October 26, 1861, but all those of which I’m aware were composed significantly longer after the fact than those given above.  The most interesting appears in a letter by Heinrich Friedrich Peter, music teacher at the Garnier Institute, published in Silvanus Thompson’s Reis biography (p. 127); and it differs from the accounts shared above in having been written from the perspective of someone who was apparently at the other end of the line!

I was present and assisted at the experiments at Frankfort-on-the-Main, on the 26th of October, 1861; and after the meeting broke-up, I saw the members of the Society as they came and congratulated Mr. Reis on the success of his experiments.  I played upon the English horn, and Philipp Schmidt [Reis’s brother-in-law] sang.  The singing was heard much better than the playing.

 

One thought on “The First Published Accounts of the Reis Telephone (October 1861)

  1. Pingback: Reassessing the “False Theory” of the Reis Telephone: A Digital Simulation | Griffonage-Dot-Com

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.